Revolutionising agriculture: the Robot Highways initiative

How we supported a pioneering initiative, using innovative smart technologies, to try to solve major challenges around global food security.

Revolutionising agriculture: the Robot Highways initiative

How we supported a pioneering initiative, using innovative smart technologies, to try to solve major challenges around global food security.

Alistair Duke
Alistair DukeResearch Manager, BT

Based on the research, development, and experience of our world-leading research and network strategy team at Adastral Park, who are continuously driving innovation through collaboration with technology partners, industry bodies, and academics, in pursuit of tomorrow’s technologies.

Navigating the agriculture landscape

All over the world, increasingly extreme weather events caused by climate change like drought and flooding are making farming more challenging – with crop yield and soil conditions becoming harder than ever to predict.

Coupled with a rising global population, the amount of people now facing food insecurity has doubled worldwide since 2020. In less than 30 years, the UN believes that globally we’ll need to produce 60% more food than we are currently for a total of 9.3 billion people. But, with a shortfall of more than 500,000 farm workers in the UK alone, a significant number of crops are left to waste year-on-year.

Championing agriculture technology

To combat these enormous challenges, a wave of trailblazing research projects is booming in the agricultural technology (agritech) sector, as they try to explore how we can reduce our reliance on fossil fuels, human labour, and decision-making, in the global effort to improve food resilience.

Robot Highways: paving the way to food security

We recently took part in a pioneering collaborative agritech trial called Robot Highways, at Clock House Farm in Kent, led by Norway’s SAGA Robotics alongside a string of academic, agricultural, and technology partners.

The main objective was to see whether a fleet of robots, tasked with various roles, could interact and cooperate to form a robust and highly efficient soft-fruit farming operation.

The project was broken down into different use cases that the robot fleet would need to successfully demonstrate on the farm – from fruit picking, packing, counting, spraying, UVC disease control, multi-device scheduling and coordination, and self-charging.

It stands as the most extensive trial of robotics and autonomous technologies in an agricultural setting to date.

Designing a bespoke farm operations dashboard

Farmers need to be able to control their entire robot fleet and oversee the progress of all of their different devices in one place.

To prove its viable real-world application, we designed a prototype cloud-based farm operations dashboard. The dashboard can integrate incoming data and control functions from all the robots and Internet of Things (IoT) devices across the farm seamlessly.

Farmers can:

  • see the exact location of each device in real-time
  • schedule and monitor multiple tasks
  • and check the status of devices, like battery life.


The dashboard can also measure performance, keep detailed logs, generate reports, and include a range of emergency override features. It even can integrate live weather updates to improve forecasting and predict how tasks might be affected by changing conditions.

Cutting-edge processing power

Our role extended to developing a flexible edge and cloud-based architecture that could support the high-level requirements of the robot fleets, smart devices, and data processing taking place. We could then maximise the performance of different robot tasks by determining the best place for data and computation on the network, whether that was at the network edge or in the cloud.

This architectural flexibility meant that less latency-sensitive applications could be processed in the cloud, where there’s sufficient data storage available to handle enormous volumes of data being generated at any one time. This less time-sensitive data could be analysed with cloud compute power and any identified trends used to help with strategic future planning.

The development of a viable fruit-picking robot is a prime example of how Edge Compute could support innovation. To rival human labourers, the robots would need to be able to work accurately at speed and respond to commands in real-time.

Edge Compute’s low latency support for accelerated in-the-field decision-making would be critical to allowing the robots to rapidly process visual data into prompt, on-the-spot actions – like determining whether fruit was ripe to pick.

Implications for future generations

Robot Highways has received wide-ranging interest from farmers, supermarkets, and even politicians as they recognise its exciting potential to increase efficiency and yield. It’s helped highlight how important next-generation connectivity is in powering and enabling the advanced automation capabilities that projects like this rely on.

The deployment of higher bandwidth and lower latency rural 5G networks would be the logical next step to amplify the productivity of automated farming and precision-based agriculture.

But its success is far more than just a major milestone on the road to next-generation farming. Robot Highways could have wide-ranging implications for a range of different industries – from drone fleet coordination to automated construction and manufacturing. If adopted, it could solve major challenges in other sectors, especially around labour, efficiency, safety, and sustainability.

Commitment to innovation

Supporting forward-thinking research and development is a fundamental part of what we do. By working on these types of innovative projects, we’re not just exploring how new technologies can transform industries to deliver a competitive edge to organisations, but how they can also improve the lives of everyone on the planet.

You can read more about the outcomes of the Robot Highways project, and its vision for the future of agriculture, in our recent whitepaper.

Related content

business buildings at dusk
INTERNET OF THINGS
October 09, 2023
Monitor your buildings remotely with IoT
farmer stood by a tractor
DIGITAL TRANSFORMATION
August 22, 2023
Revolutionising agriculture: the Robot Highways initiative
technician using a robotic arm
DIGITAL TRANSFORMATION
February 25, 2021
How to optimise your business processes ready for Robot Process Automation (RPA)